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Abstract 

A crystallographic interpretation of the elementary 
divisor theorem applied to square integral matrices is 
presented. The concept of a least multiplier of a rational 
square matrix is introduced and its properties are 
derived from the theorem. These topics are relevant in 
the formulation of a general theory of coincidence-site 
lattices. 

1. Introduction 

Mathematically, a lattice is a module of linear forms 
over the ring of integers. A linear mapping between an 
s-dimensional and an r-dimensional lattice can be 
expressed by an s x r matrix of rank equal to the 
smaller of r and s; this matrix is written in particular 
bases of the two lattices. We shall consider mostly 
matrices which contain only integral elements; they are 
termed integral or i matrices. Particular attention will 
be given to square i matrices. These matrices ob- 
viously define a relation between a lattice and a 
sublattice of the same dimension. A square i matrix will 
be termed a 1 matrix if the absolute value of its 
determinant is unity. A change of basis in a lattice is 
represented by a 1 matrix. 

The purpose of this paper is twofold. First, we 
introduce the elementary divisor theorem of linear 
algebra (e.g. Van der Waerden, 1970) and give a 
crystallographic interpretation of the invariant set 
(related to the elementary divisors) of a square i matrix. 
We then apply the theorem to determine the least 
multiplier of a rational square matrix. This problem is 
relevant in the context of coincidence-site-lattice theory 
to find the degree of coincidence of two lattices. In the 
following paper (Fortes, 1983) these results are 
incorporated in a general theory of coincidence-site and 
related lattices. The elementary divisor theorem was 
previously applied by Grimmer (1976) to obtain the 
degree of coincidence between two crystal lattices. 
However, his results are not entirely correct as we will 
show in the following paper (Fortes, 1983). 
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2. The elementary divisor theorem 

The elementary divisor theorem (Van der Waerden, 
1970), which is central to the following discussion, 
states that given a square i matrix, N, it is always 
possible to find two 1 matrices S, T such that 

S N T - I  = Nd, (1) 

where N d is a diagonal matrix. Note that T -1 is also a 1 
matrix. In other words, there are always bases for the 
two lattices related by N, such that the transformation 
is represented by an (equivalent) diagonal matrix. For a 
given N, there are in general several equivalent diagonal 
forms. Among these, there is a particular diagonal 
form, which we term the principal diagonal f o rm ,  N d, 
with the following property: the diagonal elements (n 1, 
.... ns) of N d (with n t > 0) are such that n i_ 1 is a divisor 
of n~. The n~ are termed the elementary divisors of N. It 
is clear that two i matrices with the same principal 
diagonal form are equivalent and vice versa. 

The n~ can easily be determined in the following way 
(Van der Waerden, 1970). Let d k be the greatest 
comon divisor (GCD) of the k-rowed subdeterminants 
of N. Clearly, d s = I det N I. Then 

n 1 = d 1 

ni = d i /d i -  1. (2) 

The d i are therefore invariant on a change of bases, and 
will be called the invariants of N. The name 'de- 
terminant divisor' is also used for d~. It is obvious that 
two i matrices with the same invariant set are 
equivalent. 

Let n be the smallest positive integer such that n N  -1 
is an i matrix. It is easy to show that n is also an 
invariant. In fact, since N -1 = adj N / d  s, it follows that 
ds = nds_ 1, so that n = n s is an invariant. 

The other diagonal forms of N can be obtained by 
combining the prime factors in I det N I in a different 
way. In the principal diagonal form the exponents of 
any prime factor appear in non-decrescent order in the 
successive elements. We give an example, for 
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N =  8 . 

18 8 18 

The invariants are d~ = 1; d 2 = 2 x 3; d 3 = 2 4 × 3 3. 

The principal diagonal form is (1; 2 × 3; 23 x 32) or (1, 
6, 72). The other diagonal forms are (2, 3, 72), (1, 18, 
24), (3, 8, 18), (2, 9, 24), (6, 8, 9) and all others 
obtained from these by changing the order and the sign 
of the integers. 

It should be noted that the elementary divisor 
theorem can also be applied to rectangular i matrices. If 
the rank of the matrix is r, it can be put in a form which 
contains a square r x r principal diagonal submatrix 
and zeros (Van der Waerden, 1970). The diagonal 
elements are obtained in the same way, (2), from the 
invariant set. 

3. Geometrical interpretation of the invariants 

Consider an arbitrary s-dimensional lattice L with a 
vector basis (e~ ... es). Any non-singular s x s i matrix 
N defines a sublattice L '  of L, of the same dimension, 
and with a basis (e'l ... e~) given by 

e' = eN, (3) 

where e and e' are to be regarded as row matrices with 
elements ei and e~, respectively. If we consider the 
lattice points of L, we may think that the points which 
belong to the sublattice L'  are marked in some way that 
distinguishes them from the other points of L. The 
reciprocal fraction of marked points is IdetNI = d, 
since this is also the ratio of the volumes of unit cells in 
L and L' .  The marked points are the points of lattice L 
in coincidence with points of lattice L'.  Their re- 
ciprocal fraction, d s, is accordingly called the degree of 
coincidence of lattice L with lattice L'.  

We consider now the sublattices of lattice L of 
dimension r < s, which we term r sublattices. Each r 
sublattice can be defined by a rectangular i matrix 
C (s × r) such that the set (f~... fr) obtained from 

f =  eC = e' N -1 C (4) 

is a basis of the sublattice. The r sublattice is said to be 
complete if it contains all vectors of L that are parallel 
to any vector of the sublattice. In this case the matrix C 
is a prime matrix, that is, CD -~ = (i), where (i) denotes 
an arbitrary i matrix, can only be satisfied by an i 
matrix D, if I det D I = 1. 

In each complete r sublattice there is a certain 
proportion of marked points relative to all points in that 
sublattice. We shall relate the reciprocal fraction of 
marked points (or degree of coincidence) in complete r 
sublattices to the invariants of N. 

Theorem 1. The minimum reciprocal fraction o f  
marked points or minimum degree of coincidence 
(maximum coincidence) in the various complete sub- 
lattices of dimension r is d r (r < s). 

The degree of coincidence in each r sublattice C is 
Idet PI, where P is an i matrix of order r with the least 
absolute value of its determinant and such that 

N -~ CP = (/). (5) 

(/) is necessarily a prime matrix. This equation can be 
written as 

C =  N( i )  P - ' .  (6) 

N can always be put in its principal diagonal form (ni) 
by a convenient change of bases in L and L' .  Consider 
any prime factor p in n i. Let ai be the exponent o f p  in 
n t, with 0 < al < a2 • • • < as. We want to find the least 
value of IdetPI for which N ( i ) P  -~ is an i matrix and (i) 
is an arbitrary prime matrix. Suppose first that (i) is a 1 
matrix with 0,1 elements and with one element 1 in 
each line and column. Then the matricial products N(i )  
are the set of all r x r submatrices of N. If we consider 
the determinants of such submatrices, we see that the 
minimum exponent o f p  in these determinants is (a 1 + 
az + ... + at) which is also the exponent o f p  in d r. 
This happens for all prime factors in ni; therefore, the 
minimum value of Idet PI is dr. If, instead of matrices 
(i) with 0,1 elements, we take arbitrary prime matrices 
(i) in (6), the least Idet P[ is obviously not changed. 

In the example of § 2, the three-dimensional 
sublattice defined by N gives rise to a degree of 
coincidence d 3 = 432. The best coincidence in lattice 
planes (complete 2 sublattices) corresponds to a degree 
of coincidence d 2 = 6 and the best coincidence in lattice 
directions (complete 1 sublattices) corresponds to a 
degree of coincidence d~ -- 1 (that is, there are lattice 
directions in L which contain totally marked points). 

The same geometrical interpretation of the in- 
variants applies to rectangular i matrices. 

4. Application to coincidence-site-lattice theory 

As an application of the invariants of a square i matrix, 
we indicate a method of determining the value of the 
determinant of a least multiplier (LM) of a rational 
square matrix X, that is, a matrix with rational 
elements. This problem is relevant in the determination 
of the degree of coincidence between two lattices in a 
coincidence-site relation, which is in fact defined by a 
rational matrix (Grimmer, 1976). 

A LM of the matrix X is an i matrix N with the least 
value of I det N I and such that X N  is an i matrix N'  : 

X N  = N ' .  (7) 
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This is the definition for a right multiplier. We shall find 
the least value of  IdetNI satisfying (7), which we 
denote by 27. 

The matr ix X can be written in the form 

t 
X = - Q ,  (8) 

q 

where t, q are positive coprime integers and Q is an i 
matrix with the invariant  d l =  1; q is then the smallest 
integer such that q X  is an i matrix. After finding the 
invariants dl = 1, dz, ..., ds of  Q, this matrix can be 
written in its principal  diagonal  form Qa with elements 
ql,  q2, . . . ,  qs, given by (2): 

ql = 1; qi = di /d i - l "  (9) 

It is easily shown that Z is not affected by dia- 
gonalization and is the same for left and right LM's .  The 
value of 2; can be obtained immediately from the 
principal diagonal  form. It is enough to find a diagonal 
matrix N a with the least (positive) values of the 
diagonal elements, such that ( I / q ) Q d N d  = (i). Then 
2; = det N d is the product  of  the diagonal  elements of  
Nd. 

Theorem 2. The absolute value 27 of the determinant  
of  a least multiplier of  a rational matrix is given by 

27 = q(1). q(2) ... q(s), (10) 

where 

q 

q(i) = G C D  (q, q~) (11) 

Let us now take the matrix X -1 and determine the 
integers q', q~, qi0 for this matrix [ X  -1 = ( r ' / q ' ) Q ' ] .  
Writing (7) in the form 

X - 1 N ' = N ,  (12) 

it follows that the value of  27' for the matrix X -1 is 
I det N ' I  and therefore 

27'/2; = Idet XI.  (13) 

Using theorem 2 we may  write 

Z lde t  X I 
= 1. (14) 

q~l) .-. q~s) 

We now prove that 27 is coprime with qls). To simplify, 
assume that only one prime factor p appears in the 
principal diagonal  form 

2 a =  ( r / p " )  ( l, p %  p %  ... ,  p~s), 

with a i > a i_ 1. When a < a s, an exponent  a c is defined 
such that a c < a and ac+ 1 > a. In this case the 
principal form o f X  - l  is 

1 
X d l =  (1, p,~,- . . . .  , ..., p,*s) 

rpa s -a  

and qi0 = r for i > s - c. The value of  27 is 27 = 
pC~-(,~,+...+,,c) so that 27 is 'coprime with q[s). When  ct > 
a s it is 27 = pS~-(,~,+...+~c) and the principal diagonal  
form o f X  -1 is 

p t l '  - -  O t s  

x2 ' -  (1, . . . ,p% 
r 

so that all qli) = r. Therefore 27 and qls) are coprime in 
all cases. The same result holds if there is more than 
one prime factor in -~'a. Combining  this result with (14), 
we may  state Theorem 3. 

Theorem 3. 27 is the smallest positive integer such 
that 

Z det X 

qil) " " qls-1) 

is an integer. 
Let us now consider qls-l) .  For c > 1, qls-) = r is 

coprime with 27. For  c = 1 it is 27 = p~ = q. 
Theorem 4. 27 is the smallest positive integer such 

that 

22 27 det X 
and 

q q i l ) " "  qls-2) 

are both integers. 
This theorem is useful, because for third-order 

matrices q~s-2) = q[1) = q'- 
Theorem 5. For  third-order matrices, Z is the 

smallest integer such that 

Z Z det X 
- -  and 
q q' 

are integers. 

The author is indebted to Dr  H. Gr immer  for 
discussions during the preparation of  this paper. 

R e f e r e n c e s  

FORTES, M. A. (1983). Acta Cryst. A39, 351-357. 
GRIMMER, H. (1976). Aeta Cryst. A32, 783-785. 
VAN DER WAERDEN, B. L. (1970). Algebra, Vol. 2, Ch. 12. New 

York: Fredrick Ungar. 


